Enhanced clustering of biomedical documents using ensemble non-negative matrix factorization

نویسندگان

  • Xiaodi Huang
  • Xiaodong Zheng
  • Wei Yuan
  • Fei Wang
  • Shanfeng Zhu
چکیده

Searching and mining biomedical literature databases are common ways of generating scientific hypotheses by biomedical researchers. Clustering can assist researchers to form hypotheses by seeking valuable information from grouped documents effectively. Although a large number of clustering algorithms are available, this paper attempts to answer the question as to which algorithm is best suited to accurately cluster biomedical documents. Non-negative matrix factorization (NMF) has been widely applied to clustering general text documents. However, the clustering results are sensitive to the initial values of the parameters of NMF. In order to overcome this drawback, we present the ensemble NMF for clustering biomedical documents in this paper. The performance of ensemble NMF was evaluated on numerous datasets generated from the TREC Genomics track dataset. With respect to most datasets, the experimental results have demonstrated that the ensemble NMF significantly outperforms classical clustering algorithms of bisecting K-means, and hierarchical clustering. We compared four different methods for constructing an ensemble NMF. For clustering biomedical documents, this research is the first to compare ensemble NMF with typical classical clustering algorithms, and validates ensemble NMF constructed from different graph-based ensemble algorithms. This is also the first work on ensemble NMF with Hybrid Bipartite Graph Formulation for clustering biomedical documents. 2011 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Non-negative Matrix Factorization for Clustering Biomedical Documents

Searching and mining biomedical literature database, such as MEDLINE, is the main source of generating scientific hypothesis for biomedical researchers. Through grouping similar documents together, clustering techniques can facilitate user’s need of effectively finding interested documents. Since non-negative matrix factorization (NMF) can effectively capture the latent semantic space with non-...

متن کامل

Ensemble document clustering using weighted hypergraph generated by NMF

In this paper, we propose a new ensemble document clustering method. The novelty of our method is the use of Non-negative Matrix Factorization (NMF) in the generation phase and a weighted hypergraph in the integration phase. In our experiment, we compared our method with some clustering methods. Our method achieved the best results.

متن کامل

Enhancing Text Document Clustering Using Non-negative Matrix Factorization and WordNet

A classic document clustering technique may incorrectly classify documents into different clusters when documents that should belong to the same cluster do not have any shared terms. Recently, to overcome this problem, internal and external knowledge-based approaches have been used for text document clustering. However, the clustering results of these approaches are influenced by the inherent s...

متن کامل

Document Clustering Through Non-Negative Matrix Factorization: A Case Study of Hadoop for Computational Time Reduction of Large Scale Documents

In this paper we discuss a new model for document clustering which has been adapted using non-negative matrix factorization method. The key idea is to cluster the documents after measuring the proximity of the documents with the extracted features. The extracted features are considered as the final cluster labels and clustering is done using cosine similarity which is equivalent to k-means with...

متن کامل

Clinical Document Clustering using Multi-view Non-Negative Matrix Factorization

Clinical document contains vital information like symptom names, medication names, age, gender and some demographical information. These information can be used for giving quick relief from a disease. In existing system, they had built a system for clustering symptom names and medication names using Multi-View Non-Negative Matrix Factorization. While considering the clinical documents the facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2011